Second-order methods can converge much faster than first-order methods by incorporating second-order derivates or statistics, but they are far less prevalent in deep learning due to their computational inefficiency. To handle this, many of the existing solutions focus on reducing the size of the matrix to be inverted. However, it is still needed to perform the inverse operator in each iteration. In this paper, we present a fast natural gradient descent (FNGD) method, which only requires computing the inverse during the first epoch. Firstly, we reformulate the gradient preconditioning formula in the natural gradient descent (NGD) as a weighted sum of per-sample gradients using the Sherman-Morrison-Woodbury formula. Building upon this, to avoid the iterative inverse operation involved in computing coefficients, the weighted coefficients are shared across epochs without affecting the empirical performance. FNGD approximates the NGD as a fixed-coefficient weighted sum, akin to the average sum in first-order methods. Consequently, the computational complexity of FNGD can approach that of first-order methods. To demonstrate the efficiency of the proposed FNGD, we perform empirical evaluations on image classification and machine translation tasks. For training ResNet-18 on the CIFAR-100 dataset, FNGD can achieve a speedup of 2.05$\times$ compared with KFAC. For training Transformer on Multi30K, FNGD outperforms AdamW by 24 BLEU score while requiring almost the same training time.