Model interpretability has long been a hard problem for the AI community especially in the multimodal setting, where vision and language need to be aligned and reasoned at the same time. In this paper, we specifically focus on the problem of Visual Question Answering (VQA). While previous researches try to probe into the network structures of black-box multimodal models, we propose to tackle the problem from a different angle -- to treat interpretability as an explicit additional goal. Given an image and question, we argue that an interpretable VQA model should be able to tell what conclusions it can get from which part of the image, and show how each statement help to arrive at an answer. We introduce InterVQA: Interpretable-by-design VQA, where we design an explicit intermediate dynamic reasoning structure for VQA problems and enforce symbolic reasoning that only use the structure for final answer prediction to take place. InterVQA produces high-quality explicit intermediate reasoning steps, while maintaining similar to the state-of-the-art (sota) end-task performance.