Flexible object manipulation of paper and cloth is a major research challenge in robot manipulation. Although there have been efforts to develop hardware that enables specific actions and to realize a single action of paper folding using sim-to-real and learning, there have been few proposals for humanoid robots and systems that enable continuous, multi-step actions of flexible materials. Wrapping an object with paper and tape is more complex and diverse than traditional manipulation research due to the increased number of objects that need to be handled, as well as the three-dimensionality of the operation. In this research, necessary information is organized and coded based on the characteristics of each object handled in wrapping. We also generalize the hardware configuration, manipulation method, and recognition system that enable humanoid wrapping operations. The system will include manipulation with admittance control focusing on paper tension and state evaluation using point clouds to handle three-dimensional flexible objects. Finally, wrapping objects with different shapes is experimented with to show the generality and effectiveness of the proposed system.