The Prostate Imaging Reporting and Data System (PI-RADS) is pivotal in the diagnosis of clinically significant prostate cancer through MRI imaging. Current deep learning-based PI-RADS scoring methods often lack the incorporation of essential PI-RADS clinical guidelines~(PICG) utilized by radiologists, potentially compromising scoring accuracy. This paper introduces a novel approach that adapts a multi-modal large language model (MLLM) to incorporate PICG into PI-RADS scoring without additional annotations and network parameters. We present a two-stage fine-tuning process aimed at adapting MLLMs originally trained on natural images to the MRI data domain while effectively integrating the PICG. In the first stage, we develop a domain adapter layer specifically tailored for processing 3D MRI image inputs and design the MLLM instructions to differentiate MRI modalities effectively. In the second stage, we translate PICG into guiding instructions for the model to generate PICG-guided image features. Through feature distillation, we align scoring network features with the PICG-guided image feature, enabling the scoring network to effectively incorporate the PICG information. We develop our model on a public dataset and evaluate it in a real-world challenging in-house dataset. Experimental results demonstrate that our approach improves the performance of current scoring networks.