Domain shift is a common problem in the realistic world, where training data and test data follow different data distributions. To deal with this problem, fully test-time adaptation (TTA) leverages the unlabeled data encountered during test time to adapt the model. In particular, Entropy-Based TTA (EBTTA) methods, which minimize the prediction's entropy on test samples, have shown great success. In this paper, we introduce a new perspective on the EBTTA, which interprets these methods from a view of clustering. It is an iterative algorithm: 1) in the assignment step, the forward process of the EBTTA models is the assignment of labels for these test samples, and 2) in the updating step, the backward process is the update of the model via the assigned samples. Based on the interpretation, we can gain a deeper understanding of EBTTA, where we show that the entropy loss would further increase the largest probability. Accordingly, we offer an alternative explanation for why existing EBTTA methods are sensitive to initial assignments, outliers, and batch size. This observation can guide us to put forward the improvement of EBTTA. We propose robust label assignment, weight adjustment, and gradient accumulation to alleviate the above problems. Experimental results demonstrate that our method can achieve consistent improvements on various datasets. Code is provided in the supplementary material.