StyleGAN is able to produce photorealistic images almost indistinguishable from real ones. Embedding images into the StyleGAN latent space is not a trivial task due to the reconstruction quality and editing quality trade-off. In this paper, we first introduce a new normalized space to analyze the diversity and the quality of the reconstructed latent codes. This space can help answer the question of where good latent codes are located in latent space. Second, we propose a framework to analyze the quality of different embedding algorithms. Third, we propose an improved embedding algorithm based on our analysis. We compare our results with the current state-of-the-art methods and achieve a better trade-off between reconstruction quality and editing quality.