To improve the compressive sensing MRI (CS-MRI) approaches in terms of fine structure loss under high acceleration factors, we have proposed an iterative feature refinement model (IFR-CS), equipped with fixed transforms, to restore the meaningful structures and details. Nevertheless, the proposed IFR-CS still has some limitations, such as the selection of hyper-parameters, a lengthy reconstruction time, and the fixed sparsifying transform. To alleviate these issues, we unroll the iterative feature refinement procedures in IFR-CS to a supervised model-driven network, dubbed IFR-Net. Equipped with training data pairs, both regularization parameter and the utmost feature refinement operator in IFR-CS become trainable. Additionally, inspired by the powerful representation capability of convolutional neural network (CNN), CNN-based inversion blocks are explored in the sparsity-promoting denoising module to generalize the sparsity-enforcing operator. Extensive experiments on both simulated and in vivo MR datasets have shown that the proposed network possesses a strong capability to capture image details and preserve well the structural information with fast reconstruction speed.