Most alignment research today focuses on designing new learning algorithms using datasets like Anthropic-HH, assuming human feedback data is inherently reliable. However, little attention has been given to the qualitative unreliability of human feedback and its impact on alignment. To address this gap, we conduct a comprehensive study and provide an in-depth analysis of human feedback data. We assess feedback reliability using a committee of gold reward models, revealing that over 25% of the dataset shows low or no agreement with these models, implying a high degree of unreliability. Through a qualitative analysis, we identify six key sources of unreliability, such as mis-labeling, subjective preferences, differing criteria and thresholds for helpfulness and harmlessness, etc. Lastly, to mitigate unreliability, we propose Source-Aware Cleaning, an automatic data-cleaning method guided by the insight of our qualitative analysis, to significantly improve data quality. Extensive experiments demonstrate that models trained on our cleaned dataset, HH-Clean, substantially outperform those trained on the original dataset. We release HH-Clean to support more reliable LLM alignment evaluation in the future.