This paper provides an exact characterization of the expected generalization error (gen-error) for semi-supervised learning (SSL) with pseudo-labeling via the Gibbs algorithm. This characterization is expressed in terms of the symmetrized KL information between the output hypothesis, the pseudo-labeled dataset, and the labeled dataset. It can be applied to obtain distribution-free upper and lower bounds on the gen-error. Our findings offer new insights that the generalization performance of SSL with pseudo-labeling is affected not only by the information between the output hypothesis and input training data but also by the information {\em shared} between the {\em labeled} and {\em pseudo-labeled} data samples. To deepen our understanding, we further explore two examples -- mean estimation and logistic regression. In particular, we analyze how the ratio of the number of unlabeled to labeled data $\lambda$ affects the gen-error under both scenarios. As $\lambda$ increases, the gen-error for mean estimation decreases and then saturates at a value larger than when all the samples are labeled, and the gap can be quantified {\em exactly} with our analysis, and is dependent on the \emph{cross-covariance} between the labeled and pseudo-labeled data sample. In logistic regression, the gen-error and the variance component of the excess risk also decrease as $\lambda$ increases.