What is the best way to define algorithmic fairness? There has been much recent debate on algorithmic fairness. While many definitions of fairness have been proposed in the computer science literature, there is no clear agreement over a particular definition. In this work, we investigate ordinary people's perceptions of three of these fairness definitions. Across two online experiments, we test which definitions people perceive to be the fairest in the context of loan decisions, and whether those fairness perceptions change with the addition of sensitive information (i.e., race of the loan applicants). We find a clear preference for one definition, and the general results seem to align with the principle of affirmative action.