Reinforcement learning (RL) has been extensively researched for enhancing human-environment interactions in various human-centric tasks, including e-learning and healthcare. Since deploying and evaluating policies online are high-stakes in such tasks, off-policy evaluation (OPE) is crucial for inducing effective policies. In human-centric environments, however, OPE is challenging because the underlying state is often unobservable, while only aggregate rewards can be observed (students' test scores or whether a patient is released from the hospital eventually). In this work, we propose a human-centric OPE (HOPE) to handle partial observability and aggregated rewards in such environments. Specifically, we reconstruct immediate rewards from the aggregated rewards considering partial observability to estimate expected total returns. We provide a theoretical bound for the proposed method, and we have conducted extensive experiments in real-world human-centric tasks, including sepsis treatments and an intelligent tutoring system. Our approach reliably predicts the returns of different policies and outperforms state-of-the-art benchmarks using both standard validation methods and human-centric significance tests.