Deep neural networks have recently succeeded in digital halftoning using vanilla convolutional layers with high parallelism. However, existing deep methods fail to generate halftones with a satisfying blue-noise property and require complex training schemes. In this paper, we propose a halftoning method based on multi-agent deep reinforcement learning, called HALFTONERS, which learns a shared policy to generate high-quality halftone images. Specifically, we view the decision of each binary pixel value as an action of a virtual agent, whose policy is trained by a low-variance policy gradient. Moreover, the blue-noise property is achieved by a novel anisotropy suppressing loss function. Experiments show that our halftoning method produces high-quality halftones while staying relatively fast.