As radar systems accompanied by large numbers of antennas and scale up in bandwidth, the cost and power consumption of high-precision (e.g., 10-12 bits) analog-to-digital converter (ADC) become the limiting factor. As a remedy, line spectral estimation and detection (LSE\&D) from low resolution (e.g., 1-4 bits) quantization has been gradually drawn attention in recent years. As low resolution quantization reduces the dynamic range (DR) of the receiver, the theoretical detection probabilities for the multiple targets (especially for the weakest target) are analyzed, which reveals the effects of low resolution on weak signal detection and provides the guidelines for system design. The computation complexities of current methods solve the line spectral estimation from coarsely quantized samples are often high. In this paper, we propose a fast generalized Newtonized orthogonal matching pursuit (GNOMP) which has superior estimation accuracy and maintains a constant false alarm rate (CFAR) behaviour. Besides, such an approach are easily extended to handle the other measurement scenarios such as sign measurements from time-varying thresholds, compressive setting, multisnapshot setting, multidimensional setting and unknown noise variance. Substantial numerical simulations are conducted to demonstrate the effectiveness of GNOMP in terms of estimating accuracy, detection probability and running time. Besides, real data are also provided to demonstrate the effectiveness of the GNOMP.