Continual Learning (CL) often relies on the availability of extensive annotated datasets, an assumption that is unrealistically time-consuming and costly in practice. We explore a novel paradigm termed name-only continual learning where time and cost constraints prohibit manual annotation. In this scenario, learners adapt to new category shifts using only category names without the luxury of annotated training data. Our proposed solution leverages the expansive and ever-evolving internet to query and download uncurated webly-supervised data for image classification. We investigate the reliability of our web data and find them comparable, and in some cases superior, to manually annotated datasets. Additionally, we show that by harnessing the web, we can create support sets that surpass state-of-the-art name-only classification that create support sets using generative models or image retrieval from LAION-5B, achieving up to 25% boost in accuracy. When applied across varied continual learning contexts, our method consistently exhibits a small performance gap in comparison to models trained on manually annotated datasets. We present EvoTrends, a class-incremental dataset made from the web to capture real-world trends, created in just minutes. Overall, this paper underscores the potential of using uncurated webly-supervised data to mitigate the challenges associated with manual data labeling in continual learning.