In this paper, we investigate the question of which technology, fluid antenna systems (FAS) or active reconfigurable intelligent surfaces (ARIS), plays a more crucial role in FAS-ARIS wireless communication systems. To address this, we develop a comprehensive system model and explore the problem from an optimization perspective. We introduce an alternating optimization (AO) algorithm incorporating majorization-minimization (MM), successive convex approximation (SCA), and sequential rank-one constraint relaxation (SRCR) to tackle the non-convex challenges inherent in these systems. Specifically, for the transmit beamforming of the BS optimization, we propose a closed-form rank-one solution with low-complexity. For the optimization the positions of fluid antennas (FAs) of the BS, the Taylor expansions and MM algorithm are utilized to construct the effective lower bounds and upper bounds of the objective function and constraints, transforming the non-convex optimization problem into a convex one. Furthermore, we use the SCA and SRCR to optimize the reflection coefficient matrix of the ARIS and effectively solve the rank-one constraint. Simulation results reveal that the relative importance of FAS and ARIS varies depending on the scenario: FAS proves more critical in simpler models with fewer reflecting elements or limited transmission paths, while ARIS becomes more significant in complex scenarios with a higher number of reflecting elements or transmission paths. Ultimately, the integration of both FAS and ARIS creates a win-win scenario, resulting in a more robust and efficient communication system. This study underscores the importance of combining FAS with ARIS, as their complementary use provides the most substantial benefits across different communication environments.