In addition to maximizing the total revenue, decision-makers in lots of industries would like to guarantee fair consumption across different resources and avoid saturating certain resources. Motivated by these practical needs, this paper studies the price-based network revenue management problem with both demand learning and fairness concern about the consumption across different resources. We introduce the regularized revenue, i.e., the total revenue with a fairness regularization, as our objective to incorporate fairness into the revenue maximization goal. We propose a primal-dual-type online policy with the Upper-Confidence-Bound (UCB) demand learning method to maximize the regularized revenue. We adopt several innovative techniques to make our algorithm a unified and computationally efficient framework for the continuous price set and a wide class of fairness regularizers. Our algorithm achieves a worst-case regret of $\tilde O(N^{5/2}\sqrt{T})$, where $N$ denotes the number of products and $T$ denotes the number of time periods. Numerical experiments in a few NRM examples demonstrate the effectiveness of our algorithm for balancing revenue and fairness.