Designing the structure of neural networks is considered one of the most challenging tasks in deep learning. Recently, a few approaches have been proposed to automatically search for the optimal structure of neural networks, however, they suffer from either prohibitive computation cost (e.g., 256 Hours on 250 GPU in [1]) or unsatisfactory performance compared to those of hand-crafted neural networks. In this paper, we propose an Ecologically-Inspired GENetic approach for neural network structure search (EIGEN), that includes succession, mimicry and gene duplication. Specifically, we first use primary succession to rapidly evolve a community of poor initialized neural network structures into a more diverse community, followed by a secondary succession stage for fine-grained searching based on the networks from the primary succession. Extinction is applied in both stages to reduce computational cost. Mimicry is employed during the entire evolution process to help the inferior networks imitate the behavior of a superior network and gene duplication is utilized to duplicate the learned blocks of novel structures, both of which help to find the better network structures. Extensive experimental results show that our proposed approach can achieve the similar or better performance compared to the existing genetic approaches with dramatically reduced computation cost. For example, the network discovered by our approach on CIFAR-100 dataset achieves 78.1% test accuracy under 120 GPU hours, compared to 77.0% test accuracy in more than 65, 536 GPU hours in [1].