The feet of robots are typically used to design locomotion strategies, such as balancing, walking, and running. However, they also have great potential to perform manipulation tasks. In this paper, we propose a model predictive control (MPC) framework for a quadrupedal robot to dynamically balance on a ball and simultaneously manipulate it to follow various trajectories such as straight lines, sinusoids, circles and in-place turning. We numerically validate our controller on the Mini Cheetah robot using different gaits including trotting, bounding, and pronking on the ball.