Recent high-performance transformer-based speech enhancement models demonstrate that time domain methods could achieve similar performance as time-frequency domain methods. However, time-domain speech enhancement systems typically receive input audio sequences consisting of a large number of time steps, making it challenging to model extremely long sequences and train models to perform adequately. In this paper, we utilize smaller audio chunks as input to achieve efficient utilization of audio information to address the above challenges. We propose a dual-phase audio transformer for denoising (DPATD), a novel model to organize transformer layers in a deep structure to learn clean audio sequences for denoising. DPATD splits the audio input into smaller chunks, where the input length can be proportional to the square root of the original sequence length. Our memory-compressed explainable attention is efficient and converges faster compared to the frequently used self-attention module. Extensive experiments demonstrate that our model outperforms state-of-the-art methods.