We study distributionally robust offline reinforcement learning (robust offline RL), which seeks to find an optimal robust policy purely from an offline dataset that can perform well in perturbed environments. We propose a generic algorithm framework \underline{D}oubly \underline{P}essimistic \underline{M}odel-based \underline{P}olicy \underline{O}ptimization ($\texttt{P}^2\texttt{MPO}$) for robust offline RL, which features a novel combination of a flexible model estimation subroutine and a doubly pessimistic policy optimization step. The \emph{double pessimism} principle is crucial to overcome the distributional shift incurred by i) the mismatch between behavior policy and the family of target policies; and ii) the perturbation of the nominal model. Under certain accuracy assumptions on the model estimation subroutine, we show that $\texttt{P}^2\texttt{MPO}$ is provably efficient with \emph{robust partial coverage data}, which means that the offline dataset has good coverage of the distributions induced by the optimal robust policy and perturbed models around the nominal model. By tailoring specific model estimation subroutines for concrete examples including tabular Robust Markov Decision Process (RMDP), factored RMDP, and RMDP with kernel and neural function approximations, we show that $\texttt{P}^2\texttt{MPO}$ enjoys a $\tilde{\mathcal{O}}(n^{-1/2})$ convergence rate, where $n$ is the number of trajectories in the offline dataset. Notably, these models, except for the tabular case, are first identified and proven tractable by this paper. To the best of our knowledge, we first propose a general learning principle -- double pessimism -- for robust offline RL and show that it is provably efficient in the context of general function approximations.