The potential of applying diffusion models (DMs) for multiple antenna communications is discussed. A unified framework of applying DM for multiple antenna tasks is first proposed. Then, the tasks are innovatively divided into two categories, i.e., decision-making tasks and generation tasks, depending on whether an optimization of system parameters is involved. For each category, it is conceived 1) how the framework can be used for each task and 2) why the DM is superior to traditional artificial intelligence (TAI) and conventional optimization tasks. It is highlighted that the DMs are well-suited for scenarios with strong interference and noise, excelling in modeling complex data distribution and exploring better actions. A case study of learning beamforming with a DM is then provided, to demonstrate the superiority of the DMs with simulation results. Finally, the applications of DM for emerging multiple antenna technologies and promising research directions are discussed.