https://github.com/flyingby/Awesome-Deepfake-Generation-and-Detection.
In addition to the advancements in deepfake generation, corresponding detection technologies need to continuously evolve to regulate the potential misuse of deepfakes, such as for privacy invasion and phishing attacks. This survey comprehensively reviews the latest developments in deepfake generation and detection, summarizing and analyzing the current state of the art in this rapidly evolving field. We first unify task definitions, comprehensively introduce datasets and metrics, and discuss the development of generation and detection technology frameworks. Then, we discuss the development of several related sub-fields and focus on researching four mainstream deepfake fields: popular face swap, face reenactment, talking face generation, and facial attribute editing, as well as foreign detection. Subsequently, we comprehensively benchmark representative methods on popular datasets for each field, fully evaluating the latest and influential works published in top conferences/journals. Finally, we analyze the challenges and future research directions of the discussed fields. We closely follow the latest developments in