Deep learning based channel state information (CSI) feedback in frequency division duplex systems has drawn widespread attention in both academia and industry. In this paper, we focus on integrating the Type-II codebook in the wireless communication standards with deep learning to enhance the performance of CSI feedback. In contrast to the existing deep learning based studies on the Release 16 Type-II codebook, the Type-II codebook in Release 17 (R17) exploits the angular-delay-domain partial reciprocity between uplink and downlink channels to select part of angular-delay-domain ports for measuring and feeding back the downlink CSI, where the performance of deep learning based conventional methods is limited due to the deficiency of sparse structures. To address this issue, we propose two new perspectives of adopting deep learning to improve the R17 Type-II codebook. Firstly, considering the low signal-to-noise ratio of uplink channels, deep learning is utilized to accurately select the dominant angular-delay-domain ports, where the focal loss is harnessed to solve the class imbalance problem. Secondly, we propose to adopt deep learning to reconstruct the downlink CSI based on the feedback of the R17 Type-II codebook at the base station, where the information of sparse structures can be effectively leveraged. Furthermore, a weighted shortcut module is designed to facilitate the accurate reconstruction, and a two-stage loss function that combines the mean squared error and sum rate is proposed for adapting to practical multi-user scenarios. Simulation results demonstrate that our proposed deep learning based port selection and CSI reconstruction methods can improve the sum rate performance compared with the traditional R17 Type-II codebook and deep learning benchmarks.