Graph outlier detection is a prominent task of research and application in the realm of graph neural networks. It identifies the outlier nodes that exhibit deviation from the majority in the graph. One of the fundamental challenges confronting supervised graph outlier detection algorithms is the prevalent issue of class imbalance, where the scarcity of outlier instances compared to normal instances often results in suboptimal performance. Conventional methods mitigate the imbalance by reweighting instances in the estimation of the loss function, assigning higher weights to outliers and lower weights to inliers. Nonetheless, these strategies are prone to overfitting and underfitting, respectively. Recently, generative models, especially diffusion models, have demonstrated their efficacy in synthesizing high-fidelity images. Despite their extraordinary generation quality, their potential in data augmentation for supervised graph outlier detection remains largely underexplored. To bridge this gap, we introduce GODM, a novel data augmentation for mitigating class imbalance in supervised Graph Outlier detection with latent Diffusion Models. Specifically, our proposed method consists of three key components: (1) Variantioanl Encoder maps the heterogeneous information inherent within the graph data into a unified latent space. (2) Graph Generator synthesizes graph data that are statistically similar to real outliers from latent space, and (3) Latent Diffusion Model learns the latent space distribution of real organic data by iterative denoising. Extensive experiments conducted on multiple datasets substantiate the effectiveness and efficiency of GODM. The case study further demonstrated the generation quality of our synthetic data. To foster accessibility and reproducibility, we encapsulate GODM into a plug-and-play package and release it at the Python Package Index (PyPI).