Since COVID strongly affects the respiratory system, lung CT scans can be used for the analysis of a patients health. We introduce an neural network for the prediction of the severity of lung damage and the detection of infection using three-dimensional CT-scans. Therefore, we adapt the recent ConvNeXt model to process three-dimensional data. Furthermore, we introduce different pretraining methods specifically adjusted to improve the models ability to handle three-dimensional CT-data. In order to test the performance of our model, we participate in the 2nd COV19D Competition for severity prediction and infection detection.