https://github.com/cheerss/CrossFormer.
Transformers have made much progress in dealing with visual tasks. However, existing vision transformers still do not possess an ability that is important to visual input: building the attention among features of different scales. The reasons for this problem are two-fold: (1) Input embeddings of each layer are equal-scale without cross-scale features; (2) Some vision transformers sacrifice the small-scale features of embeddings to lower the cost of the self-attention module. To make up this defect, we propose Cross-scale Embedding Layer (CEL) and Long Short Distance Attention (LSDA). In particular, CEL blends each embedding with multiple patches of different scales, providing the model with cross-scale embeddings. LSDA splits the self-attention module into a short-distance and long-distance one, also lowering the cost but keeping both small-scale and large-scale features in embeddings. Through these two designs, we achieve cross-scale attention. Besides, we propose dynamic position bias for vision transformers to make the popular relative position bias apply to variable-sized images. Based on these proposed modules, we construct our vision architecture called CrossFormer. Experiments show that CrossFormer outperforms other transformers on several representative visual tasks, especially object detection and segmentation. The code has been released: