The majority of point cloud registration methods currently rely on extracting features from points. However, these methods are limited by their dependence on information obtained from a single modality of points, which can result in deficiencies such as inadequate perception of global features and a lack of texture information. Actually, humans can employ visual information learned from 2D images to comprehend the 3D world. Based on this fact, we present a novel Cross-Modal Information-Guided Network (CMIGNet), which obtains global shape perception through cross-modal information to achieve precise and robust point cloud registration. Specifically, we first incorporate the projected images from the point clouds and fuse the cross-modal features using the attention mechanism. Furthermore, we employ two contrastive learning strategies, namely overlapping contrastive learning and cross-modal contrastive learning. The former focuses on features in overlapping regions, while the latter emphasizes the correspondences between 2D and 3D features. Finally, we propose a mask prediction module to identify keypoints in the point clouds. Extensive experiments on several benchmark datasets demonstrate that our network achieves superior registration performance.