In recent years, research on decoding brain activity based on functional magnetic resonance imaging (fMRI) has made remarkable achievements. However, constraint-free natural image reconstruction from brain activity is still a challenge. The existing methods simplified the problem by using semantic prior information or just reconstructing simple images such as letters and digitals. Without semantic prior information, we present a novel method to reconstruct nature images from fMRI signals of human visual cortex based on the computation model of convolutional neural network (CNN). Firstly, we extracted the units output of viewed natural images in each layer of a pre-trained CNN as CNN features. Secondly, we transformed image reconstruction from fMRI signals into the problem of CNN feature visualizations by training a sparse linear regression to map from the fMRI patterns to CNN features. By iteratively optimization to find the matched image, whose CNN unit features become most similar to those predicted from the brain activity, we finally achieved the promising results for the challenging constraint-free natural image reconstruction. As there was no use of semantic prior information of the stimuli when training decoding model, any category of images (not constraint by the training set) could be reconstructed theoretically. We found that the reconstructed images resembled the natural stimuli, especially in position and shape. The experimental results suggest that hierarchical visual features can effectively express the visual perception process of human brain.