Robust learning on noisy-labeled data has been an important task in real applications, because label noise directly leads to the poor generalization of deep learning models. Existing label-noise learning methods usually assume that the ground-truth classes of the training data are balanced. However, the real-world data is often imbalanced, leading to the inconsistency between observed and intrinsic class distribution due to label noises. Distribution inconsistency makes the problem of label-noise learning more challenging because it is hard to distinguish clean samples from noisy samples on the intrinsic tail classes. In this paper, we propose a learning framework for label-noise learning with intrinsically long-tailed data. Specifically, we propose a robust sample selection method called two-stage bi-dimensional sample selection (TBSS) to better separate clean samples from noisy samples, especially for the tail classes. TBSS consists of two new separation metrics to jointly separate samples in each class. Extensive experiments on multiple noisy-labeled datasets with intrinsically long-tailed class distribution demonstrate the effectiveness of our method.