Contrastive vision-language models, e.g., CLIP, have garnered substantial attention for their exceptional generalization capabilities. However, their robustness to perturbations has ignited concerns. Existing strategies typically reinforce their resilience against adversarial examples by enabling the image encoder to "see" these perturbed examples, often necessitating a complete retraining of the image encoder on both natural and adversarial samples. In this study, we propose a new method to enhance robustness solely through text augmentation, eliminating the need for retraining the image encoder on adversarial examples. Our motivation arises from the realization that text and image data inherently occupy a shared latent space, comprising latent content variables and style variables. This insight suggests the feasibility of learning to disentangle these latent content variables using text data exclusively. To accomplish this, we introduce an effective text augmentation method that focuses on modifying the style while preserving the content in the text data. By changing the style part of the text data, we empower the text encoder to emphasize latent content variables, ultimately enhancing the robustness of vision-language models. Our experiments across various datasets demonstrate substantial improvements in the robustness of the pre-trained CLIP model.