To date, hundreds of crashes have occurred in open road testing of automated vehicles (AVs), highlighting the need for improving AV reliability and safety. Pre-crash scenario typology classifies crashes based on vehicle dynamics and kinematics features. Building on this, characteristics analysis can identify similar features under comparable crashes, offering a more effective reflection of general crash patterns and providing more targeted recommendations for enhancing AV performance. However, current studies primarily concentrated on crashes among conventional human-driven vehicles, leaving a gap in research dedicated to in-depth AV crash analyses. In this paper, we analyzed the latest California AV collision reports and used the newly revised pre-crash scenario typology to identify pre-crash scenarios. We proposed a set of mapping rules for automatically extracting these AV pre-crash scenarios, successfully identifying 24 types with a 98.1% accuracy rate, and obtaining two key scenarios of AV crashes (i.e., rear-end scenarios and intersection scenarios) through detailed analysis. Association analyses of rear-end scenarios showed that the significant environmental influencing factors were traffic control type, location type, light, etc. For intersection scenarios prone to severe crashes with detailed descriptions, we employed causal analyses to obtain the significant causal factors: habitual violations and expectations of certain behavior. Optimization recommendations were then formulated, addressing both governmental oversight and AV manufacturers' potential improvements. The findings of this paper could guide government authorities to develop related regulations, help manufacturers design AV test scenarios, and identify potential shortcomings in control algorithms specific to various real-world scenarios, thereby optimizing AV systems effectively.