https://github.com/zhanggang001/CFNet.
Multi-scale features are essential for dense prediction tasks, including object detection, instance segmentation, and semantic segmentation. Existing state-of-the-art methods usually first extract multi-scale features by a classification backbone and then fuse these features by a lightweight module (e.g. the fusion module in FPN). However, we argue that it may not be sufficient to fuse the multi-scale features through such a paradigm, because the parameters allocated for feature fusion are limited compared with the heavy classification backbone. In order to address this issue, we propose a new architecture named Cascade Fusion Network (CFNet) for dense prediction. Besides the stem and several blocks used to extract initial high-resolution features, we introduce several cascaded stages to generate multi-scale features in CFNet. Each stage includes a sub-backbone for feature extraction and an extremely lightweight transition block for feature integration. This design makes it possible to fuse features more deeply and effectively with a large proportion of parameters of the whole backbone. Extensive experiments on object detection, instance segmentation, and semantic segmentation validated the effectiveness of the proposed CFNet. Codes will be available at