AI-synthesized face swapping videos, commonly known as the DeepFakes, have become an emerging problem recently. Correspondingly, there is an increasing interest in developing algorithms that can detect them. However, existing dataset of DeepFake videos suffer from low visual quality and abundant artifacts that do not reflect the reality of DeepFake videos circulated on the Internet. In this work, we present a new DeepFake dataset, Celeb-DF, for the development and evaluation of DeepFake detection algorithms. The Celeb-DF dataset is generated using a refined synthesis algorithm that reduces the visual artifacts observed in existing datasets. Based on the Celeb-DF dataset, we also benchmark existing DeepFake detection algorithms.