Deep neural networks are widely used in various fields because of their powerful performance. However, recent studies have shown that deep learning models are vulnerable to adversarial attacks, i.e., adding a slight perturbation to the input will make the model obtain wrong results. This is especially dangerous for some systems with high-security requirements, so this paper proposes a new defense method by using the model super-fitting state to improve the model's adversarial robustness (i.e., the accuracy under adversarial attacks). This paper mathematically proves the effectiveness of super-fitting and enables the model to reach this state quickly by minimizing unrelated category scores (MUCS). Theoretically, super-fitting can resist any existing (even future) CE-based white-box adversarial attacks. In addition, this paper uses a variety of powerful attack algorithms to evaluate the adversarial robustness of super-fitting, and the proposed method is compared with nearly 50 defense models from recent conferences. The experimental results show that the super-fitting method in this paper can make the trained model obtain the highest adversarial robustness.