Evaluating large vision-language models (LVLMs) is very expensive, due to the high computational costs and the wide variety of tasks. The good news is that if we already have some observed performance scores, we may be able to infer unknown ones. In this study, we propose a new framework for predicting unknown performance scores based on observed ones from other LVLMs or tasks. We first formulate the performance prediction as a matrix completion task. Specifically, we construct a sparse performance matrix $\boldsymbol{R}$, where each entry $R_{mn}$ represents the performance score of the $m$-th model on the $n$-th dataset. By applying probabilistic matrix factorization (PMF) with Markov chain Monte Carlo (MCMC), we can complete the performance matrix, that is, predict unknown scores. Additionally, we estimate the uncertainty of performance prediction based on MCMC. Practitioners can evaluate their models on untested tasks with higher uncertainty first, quickly reducing errors in performance prediction. We further introduce several improvements to enhance PMF for scenarios with sparse observed performance scores. In experiments, we systematically evaluate 108 LVLMs on 176 datasets from 36 benchmarks, constructing training and testing sets for validating our framework. Our experiments demonstrate the accuracy of PMF in predicting unknown scores, the reliability of uncertainty estimates in ordering evaluations, and the effectiveness of our enhancements for handling sparse data.