https://github.com/bic-L/burst-ann2snn.
Advancing event-driven vision through spiking neural networks (SNNs) is crucial to empowering high-speed and efficient perception. While directly converting the pre-trained artificial neural networks (ANNs) - by replacing the non-linear activation with spiking neurons - can provide SNNs with good performance, the resultant SNNs typically demand long timesteps and high energy consumption to achieve their optimal performance. To address this challenge, we introduce the burst-spike mechanism inspired by the biological nervous system, allowing multiple spikes per timestep to reduce conversion errors and produce low-latency SNNs. To further bolster this enhancement, we leverage the Pareto Frontier-driven algorithm to reallocate burst-firing patterns. Moreover, to reduce energy consumption during the conversion process, we propose a sensitivity-driven spike compression technique, which automatically locates the optimal threshold ratio according to layer-specific sensitivity. Extensive experiments demonstrate our approach outperforms state-of-the-art SNN methods, showcasing superior performance and reduced energy usage across classification and object detection. Our code will be available at