https://github.com/kyle-one/Context-Encoding-of-Detected-Buildings/
Street view images classification aiming at urban land use analysis is difficult because the class labels (e.g., commercial area), are concepts with higher abstract level compared to the ones of general visual tasks (e.g., persons and cars). Therefore, classification models using only visual features often fail to achieve satisfactory performance. In this paper, a novel approach based on a "Detector-Encoder-Classifier" framework is proposed. Instead of using visual features of the whole image directly as common image-level models based on convolutional neural networks (CNNs) do, the proposed framework firstly obtains the bounding boxes of buildings in street view images from a detector. Their contextual information such as the co-occurrence patterns of building classes and their layout are then encoded into metadata by the proposed algorithm "CODING" (Context encOding of Detected buildINGs). Finally, these bounding box metadata are classified by a recurrent neural network (RNN). In addition, we made a dual-labeled dataset named "BEAUTY" (Building dEtection And Urban funcTional-zone portraYing) of 19,070 street view images and 38,857 buildings based on the existing BIC GSV [1]. The dataset can be used not only for street view image classification, but also for multi-class building detection. Experiments on "BEAUTY" show that the proposed approach achieves a 12.65% performance improvement on macro-precision and 12% on macro-recall over image-level CNN based models. Our code and dataset are available at