Kernel methods are widespread in machine learning; however, they are limited by the quadratic complexity of the construction, application, and storage of kernel matrices. Low-rank matrix approximation algorithms are widely used to address this problem and reduce the arithmetic and storage cost. However, we observed that for some datasets with wide intra-class variability, the optimal kernel parameter for smaller classes yields a matrix that is less well approximated by low-rank methods. In this paper, we propose an efficient structured low-rank approximation method---the Block Basis Factorization (BBF)---and its fast construction algorithm to approximate radial basis function (RBF) kernel matrices. Our approach has linear memory cost and floating point operations. BBF works for a wide range of kernel bandwidth parameters and extends the domain of applicability of low-rank approximation methods significantly. Our empirical results demonstrate the stability and superiority over the state-of-art kernel approximation algorithms.