Clinical classification of chest radiography is particularly challenging for standard machine learning algorithms due to its inherent long-tailed and multi-label nature. However, few attempts take into account the coupled challenges posed by both the class imbalance and label co-occurrence, which hinders their value to boost the diagnosis on chest X-rays (CXRs) in the real-world scenarios. Besides, with the prevalence of pretraining techniques, how to incorporate these new paradigms into the current framework lacks of the systematical study. This technical report presents a brief description of our solution in the ICCV CVAMD 2023 CXR-LT Competition. We empirically explored the effectiveness for CXR diagnosis with the integration of several advanced designs about data augmentation, feature extractor, classifier design, loss function reweighting, exogenous data replenishment, etc. In addition, we improve the performance through simple test-time data augmentation and ensemble. Our framework finally achieves 0.349 mAP on the competition test set, ranking in the top five.