We introduce a computationally efficient algorithm for finite stochastic linear bandits. The approach is based on the frequentist information-directed sampling (IDS) framework, with an information gain potential that is derived directly from the asymptotic regret lower bound. We establish frequentist regret bounds, which show that the proposed algorithm is both asymptotically optimal and worst-case rate optimal in finite time. Our analysis sheds light on how IDS trades off regret and information to incrementally solve the semi-infinite concave program that defines the optimal asymptotic regret. Along the way, we uncover interesting connections towards a recently proposed two-player game approach and the Bayesian IDS algorithm.