This paper investigates unsupervised approaches to overcome quintessential challenges in designing task-oriented dialog schema: assigning intent labels to each dialog turn (intent clustering) and generating a set of intents based on the intent clustering methods (intent induction). We postulate there are two salient factors for automatic induction of intents: (1) clustering algorithm for intent labeling and (2) user utterance embedding space. We compare existing off-the-shelf clustering models and embeddings based on DSTC11 evaluation. Our extensive experiments demonstrate that we sholud add two huge caveat that selection of utterance embedding and clustering method in intent induction task should be very careful. We also present that pretrained MiniLM with Agglomerative clustering shows significant improvement in NMI, ARI, F1, accuracy and example coverage in intent induction tasks. The source code for reimplementation will be available at Github.