https://github.com/duanzhiihao/lossy-vae.
Recent work has shown that Variational Autoencoders (VAEs) can be used to upper-bound the information rate-distortion (R-D) function of images, i.e., the fundamental limit of lossy image compression. In this paper, we report an improved upper bound on the R-D function of images implemented by (1) introducing a new VAE model architecture, (2) applying variable-rate compression techniques, and (3) proposing a novel \ourfunction{} to stabilize training. We demonstrate that at least 30\% BD-rate reduction w.r.t. the intra prediction mode in VVC codec is achievable, suggesting that there is still great potential for improving lossy image compression. Code is made publicly available at