The alleged threat of reconstruction attacks has led the U.S. Census Bureau (USCB) to replace in the Decennial Census 2020 the traditional statistical disclosure limitation based on rank swapping with one based on differential privacy (DP). This has resulted in substantial accuracy loss of the released statistics. Worse yet, it has been shown that the reconstruction attacks used as an argument to move to DP are very far from allowing unequivocal reidentification of the respondents, because in general there are a lot of reconstructions compatible with the released statistics. In a very recent paper, a new reconstruction attack has been proposed, whose goal is to indicate the confidence that a reconstructed record was in the original respondent data. The alleged risk of serious disclosure entailed by such confidence-ranked reconstruction has renewed the interest of the USCB to use DP-based solutions. To forestall the potential accuracy loss in future data releases resulting from adoption of these solutions, we show in this paper that the proposed confidence-ranked reconstruction does not threaten privacy. Specifically, we report empirical results showing that the proposed ranking cannot guide reidentification or attribute disclosure attacks, and hence it fails to warrant the USCB's move towards DP. Further, we also demonstrate that, due to the way the Census data are compiled, processed and released, it is not possible to reconstruct original and complete records through any methodology, and the confidence-ranked reconstruction not only is completely ineffective at accurately reconstructing Census records but is trivially outperformed by an adequate interpretation of the released aggregate statistics.