Graph contrastive learning (GCL) is prevalent to tackle the supervision shortage issue in graph learning tasks. Many recent GCL methods have been proposed with various manually designed augmentation techniques, aiming to implement challenging augmentations on the original graph to yield robust representation. Although many of them achieve remarkable performances, existing GCL methods still struggle to improve model robustness without risking losing task-relevant information because they ignore the fact the augmentation-induced latent factors could be highly entangled with the original graph, thus it is more difficult to discriminate the task-relevant information from irrelevant information. Consequently, the learned representation is either brittle or unilluminating. In light of this, we introduce the Adversarial Cross-View Disentangled Graph Contrastive Learning (ACDGCL), which follows the information bottleneck principle to learn minimal yet sufficient representations from graph data. To be specific, our proposed model elicits the augmentation-invariant and augmentation-dependent factors separately. Except for the conventional contrastive loss which guarantees the consistency and sufficiency of the representations across different contrastive views, we introduce a cross-view reconstruction mechanism to pursue the representation disentanglement. Besides, an adversarial view is added as the third view of contrastive loss to enhance model robustness. We empirically demonstrate that our proposed model outperforms the state-of-the-arts on graph classification task over multiple benchmark datasets.