Despite recent advances in video action recognition achieving strong performance on existing benchmarks, these models often lack robustness when faced with natural distribution shifts between training and test data. We propose two novel evaluation methods to assess model resilience to such distribution disparity. One method uses two different datasets collected from different sources and uses one for training and validation, and the other for testing. More precisely, we created dataset splits of HMDB-51 or UCF-101 for training, and Kinetics-400 for testing, using the subset of the classes that are overlapping in both train and test datasets. The other proposed method extracts the feature mean of each class from the target evaluation dataset's training data (i.e. class prototype) and estimates test video prediction as a cosine similarity score between each sample to the class prototypes of each target class. This procedure does not alter model weights using the target dataset and it does not require aligning overlapping classes of two different datasets, thus is a very efficient method to test the model robustness to distribution shifts without prior knowledge of the target distribution. We address the robustness problem by adversarial augmentation training - generating augmented views of videos that are "hard" for the classification model by applying gradient ascent on the augmentation parameters - as well as "curriculum" scheduling the strength of the video augmentations. We experimentally demonstrate the superior performance of the proposed adversarial augmentation approach over baselines across three state-of-the-art action recognition models - TSM, Video Swin Transformer, and Uniformer. The presented work provides critical insight into model robustness to distribution shifts and presents effective techniques to enhance video action recognition performance in a real-world deployment.