With recent advancements in language technologies, humansare now interacting with technology through speech. To in-crease the reach of these technologies, we need to build suchsystems in local languages. A major bottleneck here are theunderlying data-intensive parts that make up such systems,including automatic speech recognition (ASR) systems thatrequire large amounts of labelled data. With the aim of aidingdevelopment of dialog systems in low resourced languages,we propose a novel acoustics based intent recognition systemthat uses discovered phonetic units for intent classification.The system is made up of two blocks - the first block gen-erates a transcript of discovered phonetic units for the inputaudio, and the second block which performs intent classifi-cation from the generated phonemic transcripts. Our workpresents results for such a system for two languages families- Indic languages and Romance languages, for two differentintent recognition tasks. We also perform multilingual train-ing of our intent classifier and show improved cross-lingualtransfer and performance on an unknown language with zeroresources in the same language family.