We build universal approximators of continuous maps between arbitrary Polish metric spaces $\mathcal{X}$ and $\mathcal{Y}$ using universal approximators between Euclidean spaces as building blocks. Earlier results assume that the output space $\mathcal{Y}$ is a topological vector space. We overcome this limitation by "randomization": our approximators output discrete probability measures over $\mathcal{Y}$. When $\mathcal{X}$ and $\mathcal{Y}$ are Polish without additional structure, we prove very general qualitative guarantees; when they have suitable combinatorial structure, we prove quantitative guarantees for H\"older-like maps, including maps between finite graphs, solution operators to rough differential equations between certain Carnot groups, and continuous non-linear operators between Banach spaces arising in inverse problems. In particular, we show that the required number of Dirac measures is determined by the combinatorial structure of $\mathcal{X}$ and $\mathcal{Y}$. For barycentric $\mathcal{Y}$, including Banach spaces, $\mathbb{R}$-trees, Hadamard manifolds, or Wasserstein spaces on Polish metric spaces, our approximators reduce to $\mathcal{Y}$-valued functions. When the Euclidean approximators are neural networks, our constructions generalize transformer networks, providing a new probabilistic viewpoint of geometric deep learning.