Facial attribute analysis has received considerable attention with the development of deep neural networks in the past few years. Facial attribute analysis contains two crucial issues: Facial Attribute Estimation (FAE), which recognizes whether facial attributes are present in given images, and Facial Attribute Manipulation (FAM), which synthesizes or removes desired facial attributes. In this paper, we provide a comprehensive survey on deep facial attribute analysis covering FAE and FAM. First, we present the basic knowledge of the two stages (i.e., data pre-processing and model construction) in the general deep facial attribute analysis pipeline. Second, we summarize the commonly used datasets and performance metrics. Third, we create a taxonomy of the state-of-the-arts and review detailed algorithms in FAE and FAM, respectively. Furthermore, we introduce several additional facial attribute related issues and applications. Finally, the possible challenges and future research directions are discussed.