Metaheuristic algorithms have attracted wide attention from academia and industry due to their capability of conducting search independent of problem structures and problem domains. Often, human experts are requested to manually tailor algorithms to fit for solving a targeted problem. The manual tailoring process may be laborious, error-prone, and require intensive specialized knowledge. This gives rise to increasing interests and demands for automated design of metaheuristic algorithms with less human intervention. The automated design could make high-performance algorithms accessible to a much broader range of researchers and practitioners; and by leveraging computing power to fully explore the potential design choices, automated design could reach or even surpass human-level design. This paper presents a broad picture of the formalization, methodologies, challenges, and research trends of automated design of metaheuristic algorithms, by conducting a survey on the common grounds and representative techniques in this field. In the survey, we first present the concept of automated design of metaheuristic algorithms and provide a taxonomy by abstracting the automated design process into four parts, i.e., design space, design strategies, performance evaluation strategies, and targeted problems. Then, we overview the techniques concerning the four parts of the taxonomy and discuss their strengths, weaknesses, challenges, and usability, respectively. Finally, we present research trends in this field.