Object proposal generation methods have been widely applied to many computer vision tasks. However, existing object proposal generation methods often suffer from the problems of motion blur, low contrast, deformation, etc., when they are applied to video related tasks. In this paper, we propose an effective and highly accurate target-specific object proposal generation (TOPG) method, which takes full advantage of the context information of a video to alleviate these problems. Specifically, we propose to generate target-specific object proposals by integrating the information of two important objectness cues: colors and edges, which are complementary to each other for different challenging environments in the process of generating object proposals. As a result, the recall of the proposed TOPG method is significantly increased. Furthermore, we propose an object proposal ranking strategy to increase the rank accuracy of the generated object proposals. The proposed TOPG method has yielded significant recall gain (about 20%-60% higher) compared with several state-of-the-art object proposal methods on several challenging visual tracking datasets. Then, we apply the proposed TOPG method to the task of visual tracking and propose a TOPG-based tracker (called as TOPGT), where TOPG is used as a sample selection strategy to select a small number of high-quality target candidates from the generated object proposals. Since the object proposals generated by the proposed TOPG cover many hard negative samples and positive samples, these object proposals can not only be used for training an effective classifier, but also be used as target candidates for visual tracking. Experimental results show the superior performance of TOPGT for visual tracking compared with several other state-of-the-art visual trackers (about 3%-11% higher than the winner of the VOT2015 challenge in term of distance precision).